Knee Pathology 1

PT 614

Objectives

- Pathology - Patellofemoral
 - Subluxations/dislocations
 - Plica syndrome
 - Osgood-Schlatters
 - Patellar/Quadriceps Bursitis
 - Patellofemoral pain syndrome

- Pathology - Tibiofemoral
 - ACL injury
 - PCL injury
 - Instability
 - Special Tests for each pathology
Patellofemoral Joint Dysfunction

Subluxation/Dislocation

- Mechanism
 - Great majority of dislocations are lateral
 - Contact injury occur from varus or ER directed force while the knee is extended
 - Non-contact injury occur from increased tibial ER with the knee extended
- Recurrent subluxations due to:
 - Increased Q-angle (> 20°)
 - Shallow intercondylar groove
 - Patella alta
 - Most commonly present in adolescent females
 - Tight lateral retinaculum
 - Inadequate medial stabilizers
Subluxation/Dislocation

- Clinical manifestations
 - Pain on the lateral patella and medial soft tissues
 - Swelling medially and laterally with lateral sublux
 - Apprehension with knee extension
 - Increased pain with terminal knee flexion
 - Patient most comfortable with knee in 30-60° of flex (close packed position for PF jt.)
 - Weakness in the VMO
 - Tightness in the ITB

Plica Syndrome

- Plica is a crescent-shaped fold of synovial tissue in the PF joint present in only a portion of the population
- Most commonly found in the medial aspect of the patella
- Pain develops from the plica getting entrapped in the PF joint during AROM
- If acute, tissue is painful with palpation
Plica Syndrome

Patients typically c/o of:
- Pain with sustained knee flexion (theatre’s sign)
- Snapping or popping in the knee during AROM

Diagnosis:
- Palpation will reveal:
 - Thickened ridge medial to patella
 - If flex knee to 30° and push patella medially, often pain is produced
- + Mediopatellar plica test
- + Hughston’s plica test
- + Medial plica test

Plica Syndrome

- Mediopatellar Plica Test
- Medial plica test
- Hughston’s plica test
Osgood-Schlatters Disease

- Defined as separation of the patellar tendon and the cortical bone it attaches too away from the tibial tuberosity
- Considered a disease due to the presence of increased numbers of chondrocytes in the separated bone which then forms cartilage
 - Gradually the cartilage will ossify resulting in a large prominence of the tibial tuberosity
- Presents in adolescents during or following a rapid growth spurt coupled with overuse

Musculoskeletal Impairments III

Osgood-Schlatters Disease

- Predominately occurs in individuals involved in jumping or running sports
- Patients typically complain of:
 - Localized pain and swelling to the tibial tuberosity
 - Pain with running or jumping
 - Pain develops gradually and is rarely severe
- Diagnosis:
 - X-ray or bone scan required for definitive diagnosis and severity of avulsion
 - Palpation of the tibial tuberosity eliciting pain as well as pain with MMT of quadriceps
 - Differential diagnosis with patellar tendonitis or bursitis

Musculoskeletal Impairments III
Patellar Bursitis

- Prepatellar and suprapatellar bursa are most commonly involved
 - AKA “housemaids” or “nursemaids” knee
- Mechanism of injury:
 - Bunt force trauma
 - Repetitive and prolonged compression from kneeling
- Similar presentation to patellar tendonitis and osgood-schlatter’s disease
- Significant swelling on the knee when acute
Patellar/Quadriceps Tendonitis

- An overuse injury characterized by pain along the respective tendon
- Contributing factors include:
 - Decreased flexibility of the hamstrings, gastroc and/or ITB
 - Increased foot/ankle pronation
 - Genu valgum/femoral anteverision
 - Decreased strength in the quadriceps (VMO)
- Spontaneous rupture can occur
 - Occurs primarily from forceful eccentric contraction during a fall or from sport/recreational activity

Clinical manifestations

- Localized pain along the tendon
- Pain with MMT quadriceps
- Pain best in the morning and progressively increases throughout the day
- Relief with anti-inflammatory medications
- Pain sharp in acute cases
- Typically has only mild swelling
Patellofemoral Pain Syndrome

- Anterior knee pain is estimated to account for 25-40% of all knee problems seen in sports medicine rehab facilities.
- Dye et al. theorizes that PFPS develops from pathological processes including:
 - Peripatellar synovitis
 - Increased intraosseous pressure
 - Increased intraosseous remodeling

Diagnoses associated with PFPS:
- Quadriceps or patellar tendonitis
- Arthritis
- Chondromalacia patella
- Referred pain from lumbosacral or hip
- Osgood-Schlatters disease
Patellofemoral Pain Syndrome

- Predictors (Witvrouw et al.):
 - Tightness in the gastroc and quadriceps
 - Delayed reflex of the VMO
 - Hypermobility of the patella
 - Decreased power of the quadriceps

- Causes:
 - Decreased strength or activation rate of the VMO
 - Increase in Q-angle

Patellofemoral Pain Syndrome

- Causes of change in Q-angle (Cont.):
 - Tibial rotation
 - Increased tibial IR leads to a decreased Q-angle
 - Increased pronation produced tibial IR which decreases the Q-angle
 - Research does not support equal changes in tibial rotation with rearfoot pronation
Patellofemoral Pain Syndrome

- Causes of change in Q-angle (Con't):
 - Femoral rotation
 - Femoral IR may increase Q-angle
 - Occurs from:
 - Compensation for decreased tibial ER in terminal extension
 - Weakness in gluteus medius

Musculoskeletal Impairments III

Patellofemoral Pain Syndrome

- Causes of change in Q-angle (Con't):
 - Knee valgus
 - May occur from increased coxa varum
 - Tends to increase with age
 - Increases Q-angle
 - Leads to increased lateral compression force in PF joint

Musculoskeletal Impairments III
Patellofemoral Dysfunction

- Clark Sign (49/75)
- Q-angle (NT/NT)
- Lateral pull test (25/100)
- Vastus medialis coordination test (17/93)
- Eccentric step test (42/82)

Knee Instability
Swelling

- Measurement of muscle bulk/effusion
 - PT marks at various levels
 - Common points:
 - 6 inches below apex of patella
 - Apex of patella or joint line
 - 2”/4”/6”/9” above base of patella

Knee Instabilities

[Diagram showing knee structures and instabilities]
Knee Instabilities – anterior/medial

Table 16-1

Primary and Secondary Restraints of the Knee

<table>
<thead>
<tr>
<th>Tibial Motion</th>
<th>Primary Restraint</th>
<th>Secondary Restraints</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anterior translation</td>
<td>ACL, MCL, LCL</td>
<td>middle third of medial and lateral capsule; iliotibial band</td>
</tr>
<tr>
<td>Posterior translation</td>
<td>PCL, MCL, LCL</td>
<td>posterior third of medial and lateral capsule; popliteus tendon; anterior and posterior meniscofemoral ligaments</td>
</tr>
<tr>
<td>Valgus rotation</td>
<td>MCL, ACL, PCL</td>
<td>posterior capsule when knee is fully extended</td>
</tr>
<tr>
<td>Varus rotation</td>
<td>LCL, ACL, PCL</td>
<td>posterior capsule when knee is fully extended</td>
</tr>
<tr>
<td>External rotation</td>
<td>MCL, LCL</td>
<td>Anterior and posterior meniscofemoral ligaments</td>
</tr>
<tr>
<td>Internal rotation</td>
<td>ACL, PCL</td>
<td></td>
</tr>
</tbody>
</table>

Knee Instabilities – Medial

Musculoskeletal Impairments III
Knee Instabilities – Medial

![Image of knee structures]

Figure 21-10
Superior view of the cruciate ligaments. (Reproduced from Scott WN, The Knee, St. Louis, MO, Mosby, 1994, p. 20, with permission from Elsevier.)

Musculoskeletal Impairments III

Knee Instabilities – posterior/lateral

Table 16-1
Primary and Secondary Restraints of the Knee

<table>
<thead>
<tr>
<th>Tibial Motion</th>
<th>Primary Restraint</th>
<th>Secondary Restraints</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anterior translation</td>
<td>ACL</td>
<td>MCL, LCL; middle third of medial and lateral capsule; iliotibial band</td>
</tr>
<tr>
<td></td>
<td>PCL</td>
<td>MCL, LCL; posterior third of medial and lateral capsule; popliteus tendon; anterior and posterior meniscofemoral ligaments</td>
</tr>
<tr>
<td>Posterior translation</td>
<td>MCL</td>
<td>ACL, PCL; posterior capsule when knee is fully extended</td>
</tr>
<tr>
<td></td>
<td>LCL</td>
<td>ACL, PCL; posterior capsule when knee is fully extended</td>
</tr>
<tr>
<td>Valgus rotation</td>
<td>MCL, LCL</td>
<td>Anterior and posterior meniscofemoral ligaments</td>
</tr>
<tr>
<td>Varus rotation</td>
<td>ACL, PCL</td>
<td></td>
</tr>
<tr>
<td>External rotation</td>
<td>ACL, PCL</td>
<td></td>
</tr>
<tr>
<td>Internal rotation</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ACL, anterior cruciate ligament; MCL, medial collateral ligament; LCL, lateral collateral ligament; PCL, posterior collateral ligament.

Musculoskeletal Impairments III
Knee Instabilities – Lateral

Knee Instabilities – Medial
Posterolateral Instability/Pain

PCL Injury

- Function in limitation of motion:
 - Strongest of all ligaments in the knee
 - Able to resist twice the force as the ACL
 - Has a blood supply from the middle genicular artery
 - Has a nerve supply from the posterior tibial nerve
 - Provides substantial proprioceptive information to the brain
 - A major restraint to rotation of the tibia when the knee is flexed
 - Tension in the PCL increases with tibial IR
 - Primary function is to resist posterior translation of the tibia providing 90 to 95% of the total restraint
 - Maximal tension to the PCL occurs in full knee flexion
 - Most common mechanism of injury is when the knee is maximally flexed and the tibia is IR
Posterolateral Instability

- Injury to the PCL, LCL, arcuate ligament and popliteus
- Posterolateral compartment is the primary restraint to posteriorly directed forces at 30 degrees of knee flexion
- Undiagnosed injuries lead to increased stress to the ACL and medial meniscus
- Mechanism of injury is hyperextension with lateral rotation

Musculoskeletal Impairments III

Posterolateral Instability

- Clinical manifestations
 - Patients c/o a feeling of instability in hyperextension due to excessive external rotation with the screw home mechanism
 - Pain gradually moves from the lateral compartment to the medial compartment as the ACL and medial meniscus become strained

Musculoskeletal Impairments III
PCL/Posterior Rotary Instability

- Posterior:
 - Posterior Drawer (90/99)
 - Posterolateral drawer test
- Posterolateral:
 - Arcuate spin test
 - Jakob Test (reverse-pivot-shift) (26/95)
- Posterolateral:
 - Dial test

Anteromedial Instability/Pain
Function in limitation of motion:
- At 30 and 90° of knee flexion provides 85% of the restraining force to anterior tibial translation
- Anteromedial bundle provides this restraint
- Posterolateral bundle will restrain anterior translation from 20° flexion to full extension
- Greatest amount of laxity found at 40° of flexion
- Has a direct blood supply from the middle genicular artery
- Has a nerve supply from the posterior tibial nerve
- Provides substantial proprioceptive information to the brain

Mechanism:
- Most frequent between 20 – 40 y.o.
- Most commonly injured ligament
- Contact
 - Blow to lateral knee (valgus force)
 - “unhappy” triad
- Non-contact
 - Rotational mechanism (tibial ER)
 - Forceful hyperextension
- Quadriceps avoidance gait
 - ACL deficient knee
 - Reduction in magnitude of flexion moment during limb loading
Collateral Ligament Injury

- MCL/LCL:
 - Valgus/varus Stress (100/NT)
- Anterior:
 - Lachman’s (96/100)
 - Anterior Drawer (39/78 – acute; 92/91 – chronic)
 - Anterior drawer modification #2
 - Anterior drawer modification #3
 - Anterior drawer modification #4
- Anterolateral
 - Pivot-shift (6/100)
 - Soft pivot-shift

Musculoskeletal Impairments III